幼児の食生活に関する研究（第12報）

最近5年間の都市近郊幼児の栄養状態の変動

岡 田 玲 子
（1978年1月17日 受理）

Dietary Studies of Preschool Children in Japan (Part 12)

Changes in Nutritional Status of Preschool Children in a Suburb Quarter during the Last Five Years

Reiko Okada

Laboratory of Nutrition Education, Niigata Women's College

総 言

現在わが国の栄養と食糧そして健康問題には、「60年頃よりの食生活の質的変動の流さが表面化しつつあり，国民の一人一人が食生活の見直しをし，日本の風土に調和したそれを模索し，創造すべき時代を迎えた」ということである。食生活の変動の形態とそれらの定着の著しい幼児期から，教室的な食育が施されることの必要性がいよいよ高まってきた。著者は幼児の食生活に関する教室的研究の一端として，都市近郊幼児の栄養摂取の実態を把握し，栄養指導上の指針を得るために，本学付属幼稚園児を対象として，1972年度と1977年度の調査成績より，最近5年間の栄養状態の変動を検討した。さらに，先に得られた，山村，都市近郊農村，および漁業地域の幼児のそれにも照らして考察したものので，それらの成績を報告する。

調査方法

1. 本学付属幼稚園について

本学付属幼稚園は，新潟市郊外の国道7号線に隣接した交通の便のよい田園地帯にある。新潟市内では二園しかない県立幼稚園の一つであり，備わった教育的環境のもとに，「子どもが人間的発達の基礎を守り育て，生きること（自立）と愛すること（連帯）の能力をつちかう。」を教育目標として，
1971年に開園された。定員は96名（3歳児～5歳児）で、園児は、本園の所在地である海老ヶ瀬および大形本町を中心として、その周辺地域ならびに隣接の市より、バス、乗用車または徒歩にて通園している。

1977年7月に実施したアンケート調査の結果から、園児の家庭環境等を概観すると、保護者の職業は、会社員54.8％、公務員（役員を含む）24.3％、商工サービス・自営業18.8％、農業1.2％、その他2.8％となっており、母親の80％は主婦であり、核家族が95.3％、一人子は8.2％である。母親の食生活への関心は強く、子供の食事に関する知識の修得は、新聞・雑誌（55.5％）、家庭教育（母親から）（53.4％）、テレビ・ラジオの番組（42.4％）、書物（32.9％）、保健所の指導（16.5％）、学校教育（高等）学校（11.2％）、その他からと答えており（9項目中より3項目選択）、子供の食育において困っていることの10％に、少食、偏食、好き嫌いが激しい、食事時間が長い等食事に関する訴えが、3歳児では殆んどであり、4～5歳児においても散見された。

なお、給食は行なわれていないが、1975年度より本学家政科食物専攻の栄養指導実習の一環として、幼児給食を秋季に3回実施しており、その折に父兄に対して、給食内容の報告を兼ねてきさやかな栄養指導メモを配布している。

2. 調査対象
4歳から6歳までの男女団児について、'72年度は25名、'77年度は10名の協力が得られ、対象とした。

3. 調査時期および期間
1972年度と1977年度のそれぞれ四季の各連続した3日間（通年12日間）である。

4. 調査内容および方法
1) 食事摂取状況調査 国民栄養調査に準じ、個人別評価方式によった。摂取栄養量は三訂日本標準食品成分表の成分値500品目を入力せる電子計算機を使用し、アミノ酸摂取量は日本食品アミノ酸組成表の数値を用いて、それを算出した。これによって得られた成績の比較基準には、昭和50年における55年を目途とする日本人の栄養所要量と、年齢別栄養栄養基準を適用して、食糧構成、栄養充足率、たん白質栄養評価等を比較し、さらに照合すると勤労、山村および漁業地域幼児の成績を50％、東京都幼児の成績を50％、および国民栄養調査のそれらの最近5年間の動向に照らして考察した。なお、摂取食品、摂取栄養素相互のバランス状態の総合的な変動は、田村らに「数値群パターン解析法」を適用し、それぞれ基準パターンに対する類似性の解析によって評価した。

2) 体位測定 身長、体重を測定し、昭和50年ならびに55年の日本人体位の年齢別推計値と対比した。

3) 体力測定 平衡力（棒上片足立ち）、筋持久力（体支持持続時間）、瞬発性（立幅跳）、および調整力（両足連続跳び越し）の4種目について実施した。その評価は新潟県教育委員会による幼児の運動能力基準に従い、3点を中位とする5段階法によって行なった。'72年度は'77年度と同一の種目について実施できなかったので、新潟県公立幼稚園協会の実施せる幼児の運動能力実態調査を参考にした。
より、関連の種目を抜きにして、平衡力（バランス）、醒発性（立幅跳）、調整力（シグナル・ランとシグナル・スプリング）の3種目を、対象児の成績の参考として記載した。

調査結果ならびに考察

1. 摂取食品数ならびに献立の比較

1人1日当たりの摂取食品数の変動は表1に示す如く、年平均では26品から29品に増えたが、それは植物性食品の増加に負うとおり、動物性食品数は変わりなく、間食の食品数は5品から4品に減少した。農村（17→23品）、山村（23→22品）および漁業地域幼児（21→28品）の場合に比べると、摂取食品数が多く、変動指数は比較的小さかった。なお、動物性食品数は山村幼児（3→4品）の2〜1.5倍、農村幼児（4→4品）の1.5倍、漁業地域幼児（5→5品）の1.2倍であった。

次に、献立については各対象児それぞれに多様で一定の傾向を見出し難く、なかには単調なパターンをも見つけられたが、概してヴァラエティーに富んだ献立が多かった。もみじに、アンケート調査の結果では、子供のためによく作る料理のベスト10はハンバーグ、カレーライス、シチュウ、炒飯、焼肉、スパゲッティ、サラダ、オムレツ、餃子、フライとなっており、また子供の好きな料理もほぼこれに等しかった。一方、子供のきらいな料理は、野菜の油炒め、酢の物、煮物、煮魚、浸し、野菜サラダ等であり、現代の幼児における嗜好の特徴の一端がうかがわれる。

<table>
<thead>
<tr>
<th>季節</th>
<th>1972/77</th>
<th>動物性食品</th>
<th>植物性食品</th>
<th>間食</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>春</td>
<td>前期</td>
<td>27</td>
<td>6</td>
<td>21</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>後期</td>
<td>25</td>
<td>5</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>変動指数</td>
<td>93</td>
<td>83</td>
<td>95</td>
<td>75</td>
</tr>
<tr>
<td>夏</td>
<td>前期</td>
<td>25</td>
<td>8</td>
<td>17</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>後期</td>
<td>27</td>
<td>6</td>
<td>21</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>変動指数</td>
<td>108</td>
<td>75</td>
<td>124</td>
<td>100</td>
</tr>
<tr>
<td>秋</td>
<td>前期</td>
<td>28</td>
<td>6</td>
<td>22</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>後期</td>
<td>29</td>
<td>6</td>
<td>23</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>変動指数</td>
<td>105</td>
<td>100</td>
<td>105</td>
<td>50</td>
</tr>
<tr>
<td>冬</td>
<td>前期</td>
<td>24</td>
<td>5</td>
<td>19</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>後期</td>
<td>33</td>
<td>6</td>
<td>27</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>変動指数</td>
<td>138</td>
<td>120</td>
<td>142</td>
<td>80</td>
</tr>
<tr>
<td>年</td>
<td>前期</td>
<td>26</td>
<td>6</td>
<td>20</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>後期</td>
<td>29</td>
<td>6</td>
<td>23</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>変動指数</td>
<td>112</td>
<td>100</td>
<td>115</td>
<td>80</td>
</tr>
</tbody>
</table>

2. 摂取食品の構成とその比較

対象児の食品群別摂取状況を総括したのが表2である。この5年間に変動の見られなかった食品は
表2 食品群別摂取状況の変動
（1人1日当たり平均%）

<table>
<thead>
<tr>
<th></th>
<th>豚肉</th>
<th>いも類</th>
<th>砂糖類</th>
<th>菜類</th>
<th>苦味</th>
<th>野菜類</th>
<th>柚果類</th>
<th>油脂類</th>
<th>魚介類</th>
<th>肉類</th>
<th>卵類</th>
<th>乳類</th>
<th>総合</th>
</tr>
</thead>
<tbody>
<tr>
<td>春1972</td>
<td>204</td>
<td>39</td>
<td>23</td>
<td>25</td>
<td>66</td>
<td>34</td>
<td>32</td>
<td>110</td>
<td>230</td>
<td>3</td>
<td>60</td>
<td>39</td>
<td>53</td>
</tr>
<tr>
<td>春1977</td>
<td>220</td>
<td>46</td>
<td>5</td>
<td>21</td>
<td>29</td>
<td>44</td>
<td>46</td>
<td>85</td>
<td>165</td>
<td>2</td>
<td>52</td>
<td>63</td>
<td>57</td>
</tr>
<tr>
<td>变動指数</td>
<td>108</td>
<td>118</td>
<td>22</td>
<td>84</td>
<td>44</td>
<td>128</td>
<td>144</td>
<td>77</td>
<td>72</td>
<td>67</td>
<td>87</td>
<td>162</td>
<td>108</td>
</tr>
<tr>
<td>夏1972</td>
<td>145</td>
<td>22</td>
<td>6</td>
<td>8</td>
<td>148</td>
<td>34</td>
<td>14</td>
<td>113</td>
<td>150</td>
<td>4</td>
<td>38</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>夏1977</td>
<td>193</td>
<td>39</td>
<td>6</td>
<td>17</td>
<td>25</td>
<td>26</td>
<td>13</td>
<td>227</td>
<td>43</td>
<td>2</td>
<td>58</td>
<td>64</td>
<td>53</td>
</tr>
<tr>
<td>变動指数</td>
<td>133</td>
<td>177</td>
<td>100</td>
<td>213</td>
<td>17</td>
<td>76</td>
<td>93</td>
<td>201</td>
<td>29</td>
<td>50</td>
<td>153</td>
<td>152</td>
<td>123</td>
</tr>
<tr>
<td>秋1972</td>
<td>209</td>
<td>48</td>
<td>11</td>
<td>14</td>
<td>90</td>
<td>42</td>
<td>34</td>
<td>109</td>
<td>265</td>
<td>2</td>
<td>60</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>秋1977</td>
<td>162</td>
<td>55</td>
<td>6</td>
<td>18</td>
<td>55</td>
<td>27</td>
<td>23</td>
<td>120</td>
<td>207</td>
<td>2</td>
<td>51</td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td>变動指数</td>
<td>78</td>
<td>151</td>
<td>83</td>
<td>95</td>
<td>72</td>
<td>74</td>
<td>92</td>
<td>114</td>
<td>77</td>
<td>67</td>
<td>115</td>
<td>195</td>
<td>93</td>
</tr>
<tr>
<td>冬1972</td>
<td>230</td>
<td>41</td>
<td>12</td>
<td>22</td>
<td>69</td>
<td>34</td>
<td>37</td>
<td>90</td>
<td>239</td>
<td>3</td>
<td>52</td>
<td>39</td>
<td>55</td>
</tr>
<tr>
<td>冬1977</td>
<td>196</td>
<td>62</td>
<td>10</td>
<td>21</td>
<td>50</td>
<td>25</td>
<td>34</td>
<td>103</td>
<td>185</td>
<td>2</td>
<td>60</td>
<td>76</td>
<td>52</td>
</tr>
<tr>
<td>变動指数</td>
<td>85</td>
<td>151</td>
<td>83</td>
<td>95</td>
<td>72</td>
<td>74</td>
<td>92</td>
<td>114</td>
<td>77</td>
<td>67</td>
<td>115</td>
<td>195</td>
<td>93</td>
</tr>
<tr>
<td>年平均</td>
<td></td>
</tr>
<tr>
<td>基準量1</td>
<td>240</td>
<td>30</td>
<td>6</td>
<td>10</td>
<td>45</td>
<td>40</td>
<td>51</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>33</td>
<td>31</td>
<td>50</td>
</tr>
<tr>
<td>基準量2</td>
<td>170(男)</td>
<td>150(女)</td>
<td>60</td>
<td>30</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

注: 基準量1は、手塚昭道ほか: 柴田栄子(共著), 28, 89, 1970. の男女の平均値である。基準量2は、昭和51年度厚生科学研究による、幼児の平均食糧摂取である。

表3 食品群別摂取量の基準量に対する足長率の5年間における変動
（単位：%）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>調査年度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>食品群別</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>豚肉</td>
<td>78</td>
<td>96</td>
<td>56</td>
<td>79</td>
<td>81</td>
<td>72</td>
</tr>
<tr>
<td>いも類</td>
<td>131</td>
<td>173</td>
<td>75</td>
<td>130</td>
<td>159</td>
<td>137</td>
</tr>
<tr>
<td>砂糖類</td>
<td>301</td>
<td>76</td>
<td>84</td>
<td>148</td>
<td>163</td>
<td>148</td>
</tr>
<tr>
<td>油脂類</td>
<td>250</td>
<td>210</td>
<td>75</td>
<td>170</td>
<td>141</td>
<td>187</td>
</tr>
<tr>
<td>豆類</td>
<td>86</td>
<td>110</td>
<td>84</td>
<td>65</td>
<td>104</td>
<td>67</td>
</tr>
<tr>
<td>綠黄色野菜</td>
<td>62</td>
<td>85</td>
<td>26</td>
<td>24</td>
<td>64</td>
<td>44</td>
</tr>
<tr>
<td>その他の野菜</td>
<td>110</td>
<td>78</td>
<td>113</td>
<td>217</td>
<td>109</td>
<td>114</td>
</tr>
<tr>
<td>果実類</td>
<td>219</td>
<td>165</td>
<td>143</td>
<td>43</td>
<td>253</td>
<td>207</td>
</tr>
<tr>
<td>魚介類</td>
<td>171</td>
<td>147</td>
<td>106</td>
<td>193</td>
<td>171</td>
<td>154</td>
</tr>
<tr>
<td>肉類</td>
<td>114</td>
<td>136</td>
<td>125</td>
<td>201</td>
<td>151</td>
<td>157</td>
</tr>
<tr>
<td>卵類</td>
<td>106</td>
<td>110</td>
<td>86</td>
<td>115</td>
<td>104</td>
<td>84</td>
</tr>
<tr>
<td>乳類</td>
<td>117</td>
<td>128</td>
<td>98</td>
<td>68</td>
<td>108</td>
<td>89</td>
</tr>
</tbody>
</table>

注: 基準量は、表2に示す基準量1を用いた。
少なく、殆どの食品の摂取量に増減いずれかの変動が観察された。唯、年平均の成績では、卵類、緑黄色野菜、魚介類、および卵類の摂取量は殆ど変動がなかった。変動の比較的大きかった食品で、増加したのは肉類、卵類、およびその他の野菜であり、一方、減少したのは果実類、砂糖類、果実類、および乳類である。

次に、基準量に対する充足率は表3に示す如く、四季別にそれぞれ変動しているが、年平均の成績で見ると、油脂類、肉類、魚介類、卵類および果実類は5年間変らず高い充足率を示し、反面、緑黄色野菜、穀類、および豆類はいずれも基準量の56～90％の充足率であった。この中で特に注目されるのは次の二点である。すなわち、その一は、緑黄色野菜摂取の困難性であり、このことは農・山村および漁業地域幼児の場合にも同様に観察された。しかも、アンケート調査の結果では、乳児が子供に食べさせたいと気をつけている食品の第一に緑黄色野菜があげられているが、一方、子供の嫌いな食品の第一位がそれであり、従って、毎日食べると答えた園児は3歳児25.5％、4歳児31.7％、5歳児46.4％と極めて低率であった。その二は、充足され難しい食品は緑黄色野菜、穀類、および豆類の植物性食品のみで、乳、卵類が過剰摂取されており、魚介、肉類が基準量の1.5～2倍近い充足率を示していることは、農・山村および漁業地域幼児には見られない、都市近郊幼児に特有の現象であった。

表4は、基準量に対する摂取食品の充足状況の変動（年平均）を示したものであるが、過剰を摂取している対象児は概して少ない。5年後の動きの主なものを拾うと、充足率が201％以上を示す対象児が皆無の食品は穀類と緑黄色野菜のみであり、いも、油脂、その他の野菜、肉および卵類はこの3

<table>
<thead>
<tr>
<th>充足率</th>
<th>調査年度</th>
<th>穀類</th>
<th>いも類</th>
<th>砂糖類</th>
<th>油脂類</th>
<th>緑黄色野菜</th>
<th>のその野菜</th>
<th>果実類</th>
<th>糧介類</th>
<th>肉類</th>
<th>卵類</th>
<th>乳類</th>
</tr>
</thead>
<tbody>
<tr>
<td>201％以上</td>
<td>1972</td>
<td>0</td>
<td>17</td>
<td>33</td>
<td>35</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>48</td>
<td>28</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>1977</td>
<td>0</td>
<td>28</td>
<td>14</td>
<td>37</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td>28</td>
<td>25</td>
<td>9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>151～200％</td>
<td>1972</td>
<td>0</td>
<td>13</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>2</td>
<td>13</td>
<td>18</td>
<td>14</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>1977</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>23</td>
<td>9</td>
<td>2</td>
<td>19</td>
<td>16</td>
<td>9</td>
<td>49</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>111～150％</td>
<td>1972</td>
<td>14</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>21</td>
<td>10</td>
<td>23</td>
<td>11</td>
<td>18</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>1977</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>19</td>
<td>12</td>
<td>9</td>
<td>23</td>
<td>16</td>
<td>12</td>
<td>7</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>91～110％</td>
<td>1972</td>
<td>22</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>20</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>1977</td>
<td>26</td>
<td>12</td>
<td>14</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>51～90％</td>
<td>1972</td>
<td>55</td>
<td>20</td>
<td>16</td>
<td>11</td>
<td>29</td>
<td>26</td>
<td>29</td>
<td>14</td>
<td>18</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>1977</td>
<td>41</td>
<td>14</td>
<td>12</td>
<td>9</td>
<td>16</td>
<td>19</td>
<td>23</td>
<td>23</td>
<td>18</td>
<td>7</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>50％以下</td>
<td>1972</td>
<td>9</td>
<td>32</td>
<td>23</td>
<td>20</td>
<td>26</td>
<td>51</td>
<td>11</td>
<td>4</td>
<td>12</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>1977</td>
<td>19</td>
<td>30</td>
<td>41</td>
<td>7</td>
<td>51</td>
<td>61</td>
<td>14</td>
<td>15</td>
<td>26</td>
<td>7</td>
<td>21</td>
<td>28</td>
</tr>
</tbody>
</table>

注：基準量は、表2に示す基準量1を使用した。
サクの摂取が増え、一方、砂糖、果実、および魚介類は減っている。また、充足率が50％以下の対象児が摂取した食事は、穀類、砂糖、豆、緑黄色野菜、その他の野菜、果実、魚介、および乳類であり、とくに'77年度では豆類については15％、緑黄色野菜については15％の対象児が基準量の50％以下の摂取であった。このように通年12日間の平均値をとってみてもなお、摂取上の個人差は著しく大きく、従って、基準量の数値を労的に解釈し、活用しつつ、個人別に栄養指導を行うことが必要性を痛感させられる。

3. 摂取栄養量の分析とその比較

対象児の摂取栄養量の変動を四季別にまとめたのが表5である。5年間に増加したのはたん白質、脂質、ビタミンA（以下ビタミンはV.と略記）V.B1, V.B2 およびV.Cであり、なお、食塩の摂取量も5年前の7.1～9.6 gから、17％増えて7.6～11.0 gとなった。他方、エネルギー、糖質およびカルシウムは約10～20％減少した。

| 表5 摂 取 栄 養 量 の 変 動 |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | エネルギー (Cal) | たん白質 (g) | 脂質 (g) | カルシウム (mg) |
| 春 | 1972 | 1.860 | 63 | 35 | 66 | 278 | 634 | 10.0 | 1.08 (1.084) | 0.68 | 0.78 | 51 | 132 (432) | 9.6 |
| 1977 | 1.722 | 65 | 38 | 62 | 223 | 607 | 10.0 | 1.768 (1.91) | 1.08 | 114 | 96 | 11.0 |
| 変動指数 | | 93 | 103 | 109 | 94 | 80 | 96 | 100 | 163 | 134 | 138 | 224 | 73 | 115 |
| 夏 | 1972 | 1.500 | 52 | 28 | 42 | 222 | 555 | 9.6 | 1.111 (4.111) | 0.42 | 0.67 | 32 | 87 (357) | 7.1 |
| 1977 | 1.451 | 59 | 34 | 49 | 190 | 402 | 10.0 | 87 | 148 (99) | 81 | 103 (149) |
| 変動指数 | | 97 | 113 | 121 | 102 | 86 | 72 | 167 | 84 (138) | 96 |
| 秋 | 1972 | 1.968 | 64 | 33 | 57 | 299 | 602 | 10.3 | 1.231 (4.231) | 0.65 | 0.78 | 54 | 61 (361) | 7.9 |
| 1977 | 1.498 | 53 | 29 | 50 | 207 | 444 | 8.5 | 87 | 94 (87) | 81 | 103 (149) |
| 変動指数 | | 76 | 83 | 88 | 88 | 69 | 74 | 83 | 84 (138) | 96 |
| 冬 | 1972 | 1.962 | 63 | 33 | 61 | 288 | 610 | 10.0 | 1.078 (4.078) | 0.69 | 0.77 | 52 | 120 (420) | 8.7 |
| 1977 | 1.869 | 70 | 42 | 69 | 239 | 632 | 11.2 | 1.566 (0.73) | 0.92 | 61 | 62 | 9.8 |
| 変動指数 | | 95 | 113 | 127 | 113 | 83 | 104 | 112 | 145 (106) | 117 | 118 (113) |
| 年 | 1972 | 1.823 | 60 | 32 | 57 | 272 | 600 | 10.0 | 1.126 (1.426) | 0.67 | 0.75 | 53 | 100 (400) | 8.4 |
| 1977 | 1.635 | 62 | 36 | 58 | 215 | 521 | 9.8 | 1.256 (0.68) | 0.79 | 106 (103) | 111 | 83 | 9.8 |
| 変動指数 | | 90 | 103 | 113 | 102 | 79 | 97 | 98 | 112 (106) | 103 | 111 (113) |
| 所要値 | 50年目標値 | 1.575 | 49 | 24 | 35 | 450 | 8.5 | 1.600 (0.73) | 0.80 | 40 | 400 (6.5) |
| 所要値 | 55年目標値 | 1.583 | 51 | 26 | 44 | 430 | 8.3 | 1.067 (0.83) | 0.85 | 40 | 300 |
| 所要値 | 変動指数 | 101 | 104 | 108 | 126 | 96 | 98 | 98 | 67 (114) | 106 | 100 (75) |

注1. ビタミン類は調理による損失（V.A 20％, V.B1 30％, V.B2 25％, V.C 50％）を考慮した数値である。
注2. V.A と V.D の数値は、肝油よりの摂取量を加算したものである。

表6は栄養学的と考証に対する充足率の変動を示したものである。エネルギーについては、夏季においてのみ若干の不足が見られるが、その他の季節では、'72年は所要量の23～27%上回っていたのが、
'77年にはやや減じて1〜19%の漸減となり、年平均値は適量摂取には近い。たん白質は5年来変わらず通年所要量を5〜37%上回り、さらに動物性たん白質は'72年には所要量の19〜43%上回っていたのが、'77年には16〜61%の漸減となり、年々増加傾向を示すように思われる。同じく脂質についても、5年前よりやや減じたものの通年所要量を7〜60%上回り、このまま推移すると動物性たん白質ならんで、摂取過多の状態を呈するようになる。カルシウムおよび鉄は5年間変動なく、所要量を平均20〜28%上回っている。ビタミン類については、夏季において若干摂取不足が見られるものの、年平均ではV.A, VB₁およびV.Cの充足率の改善が見られ、いずれも所要量を2〜29%減らしている。

<table>
<thead>
<tr>
<th>表6 摂取栄養充足率の変動 (単位：%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>エネルギー</td>
</tr>
<tr>
<td>春</td>
</tr>
<tr>
<td>変動指数</td>
</tr>
<tr>
<td>夏</td>
</tr>
<tr>
<td>変動指数</td>
</tr>
<tr>
<td>秋</td>
</tr>
<tr>
<td>変動指数</td>
</tr>
<tr>
<td>冬</td>
</tr>
<tr>
<td>変動指数</td>
</tr>
<tr>
<td>年</td>
</tr>
<tr>
<td>標準偏差</td>
</tr>
<tr>
<td>平均</td>
</tr>
<tr>
<td>標準偏差</td>
</tr>
<tr>
<td>変動指数</td>
</tr>
</tbody>
</table>

注: V.A と V.D の () 内の数値は、肝油よりの摂取量を加算した場合の充足率である。

次に、栄養所要量に対する充足状況の変動をみると表7のとおりで、対象児の充足率は摂取不足の50%以上になる。摂取過多の201%以上でそれぞれ分布し、栄養摂取上の個人差が極めて大であることが知られる。5年後の変動の主なものを拾うと、201%以上を示す対象児が皆無であるのはエネルギー、V.B₁、およびV.B₂であり、他方、50%以下を示す対象児が皆無であるのはエネルギー、たん白質、脂質、鉄、およびV.B₁である。また、充足率の分布が下降傾向を示すのはエネルギーとV.B₂であり、このうちエネルギーは、他の栄養素に比して適量摂取の対象児が最も多く、一方、V.B₂
は新たに50％以下が7％現われ、適量摂取が減じ、51～90％の充足率を示す対象児が56％に増えた。
次に、摂取過多の対象児が減少し、適量摂取の域に接近しつつあるのが脂質であり、逆に、摂取過多の対象児が若干増えたのが動物性たん白質、カルシウム、鉄および V.A. である。

表7 栄養所要量に対する充足状況の変動
（単位：％）

<table>
<thead>
<tr>
<th>充足率</th>
<th>調査年度</th>
<th>エネルギー</th>
<th>たん白質</th>
<th>脂質</th>
<th>カルシウム</th>
<th>鉄</th>
<th>ビタミン</th>
<th>食塩</th>
</tr>
</thead>
<tbody>
<tr>
<td>201％以上</td>
<td>1972</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>13</td>
<td>3</td>
<td>2</td>
<td>(100)</td>
</tr>
<tr>
<td>1977</td>
<td>0</td>
<td>2</td>
<td>14</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>151～200％</td>
<td>1972</td>
<td>3</td>
<td>12</td>
<td>26</td>
<td>44</td>
<td>15</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>1977</td>
<td>5</td>
<td>16</td>
<td>12</td>
<td>16</td>
<td>14</td>
<td>9</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>111～150％</td>
<td>1972</td>
<td>65</td>
<td>58</td>
<td>36</td>
<td>32</td>
<td>41</td>
<td>46</td>
<td>30</td>
</tr>
<tr>
<td>1977</td>
<td>23</td>
<td>37</td>
<td>33</td>
<td>37</td>
<td>23</td>
<td>40</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>91～111％</td>
<td>1972</td>
<td>21</td>
<td>22</td>
<td>17</td>
<td>7</td>
<td>30</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>1977</td>
<td>47</td>
<td>19</td>
<td>20</td>
<td>35</td>
<td>26</td>
<td>20</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>51～90％</td>
<td>1972</td>
<td>11</td>
<td>7</td>
<td>14</td>
<td>3</td>
<td>10</td>
<td>13</td>
<td>32</td>
</tr>
<tr>
<td>1977</td>
<td>25</td>
<td>26</td>
<td>19</td>
<td>7</td>
<td>19</td>
<td>26</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>50％以下</td>
<td>1972</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1977</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

注：V.Aの（ ）内の数値は乾物を含めた場合で、全員が201％以上の充足率を示すことを表わす。

4. 新潟県、東京都幼児および本邦の食糧構成ならびに栄養充足率パターンの変動と都市近郊幼児のそれとの比較成績

以上の都市近郊幼児の摂取栄養状況の推移をより客観的に把握すべく、農・山村、漁業地域、東京都幼児および国民栄養の変動と比較検討し、それらの成績を表8、表9に示した。まず食糧構成パターンの変動状況について、各々の変動指数を対比すると、新潟県4地区の幼児共通の現象は菓子類摂取の減少と、肉類摂取の増加であり、さらに肉類の増加は東京都幼児および本邦の成績にも共通するものであった。なお穀類摂取においては、都市近郊幼児は本邦の場合とはほぼ同様、米類が減少し、小麥類が著しく増加しており、山村幼歓（両穀類の摂取が減少）ならびに漁業地域、農村および東京都幼歓（米・小麥類共にその摂取は増加しているが、小麥類の増加率がやや大きい）のそれとは異なっている。これらの変動指数はそれぞれ一つのパターンを構成しているものとみなし、5年後の変動なしを100％とした場合のパターン類似率を求めたところ、総体的にみるならば81～99％は変動なしとみなされる。さらに詳細に分析するならば、対象児の変動度10.2％は、漁業地域幼児のそれに等しく、山村幼児のそれよりも低値であり、農村幼児のそれよりも高値であった。一方、新潟県幼児の摂取食品の変動度は東京都幼児のそれに比べるとかなり大きく、また本邦のそれに比べてもやや大であることが知られた。

次に、栄養充足率パターンの変動状況について、各々の変動指数を対比すると、新潟県4地区の幼
表8 最近5年間における新潟県、東京都幼児および本邦の食糧構成パターンの変動状況の比較

<table>
<thead>
<tr>
<th>区分</th>
<th>年度</th>
<th>食品群別摂取量の変動指数 (B/A×100)</th>
<th>変動なしを100とした場合のパターン類似度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td>(％)</td>
</tr>
<tr>
<td>都市近郊</td>
<td>1972→77</td>
<td>59 172 134 54 43 112 82 100 127 68 104 147 100</td>
<td>74 89.8 10.2</td>
</tr>
<tr>
<td>新潟県幼児</td>
<td>1971→75</td>
<td>95 85 139 75 52 100 108 109 100 103 31 124</td>
<td>424 81.3 18.7</td>
</tr>
<tr>
<td>渔業地域</td>
<td>1969→74</td>
<td>111 113 100 156 64 157 166 140 111 97 77 344 119</td>
<td>94 89.6 10.4</td>
</tr>
<tr>
<td>都市近郊農村</td>
<td>1968→73</td>
<td>105 136 181 145 59 231 89 113 237 117 115 144 76</td>
<td>138 93.7 6.3</td>
</tr>
<tr>
<td>東京都幼児</td>
<td>1972→75</td>
<td>106 112 141 107 113 120 109 125 97 129 100 105 100</td>
<td>87 99.3 0.7</td>
</tr>
<tr>
<td>国民栄養調査</td>
<td>1970→75</td>
<td>81 139 161 74 79 101 98 96 100 239 108 151 101 131</td>
<td>134 94.2 5.8</td>
</tr>
</tbody>
</table>

注 1. Aは調査開始年度、Bは調査終了年度を表します。
2. aは、14種の食品群別摂取量の変動指数がすべて100（すなわち5年後の変動なし）の場合を基準として、それに対するパターン類似度を求め、百分率で示したものです。

3. パターン類似度算定式

\[
S(A, B) = \cos \theta = \frac{n \sum a_i b_i}{\sqrt{\sum a_i^2} \cdot \sqrt{\sum b_i^2}}
\]

表9 最近5年間における新潟県、東京都幼児および本邦の栄養充足率パターンの変動状況

<table>
<thead>
<tr>
<th>区分</th>
<th>年度</th>
<th>栄養充足率の変動指数 (B/A×100)</th>
<th>変動なしを100とした場合の比率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td>(％)</td>
</tr>
<tr>
<td>都市近郊</td>
<td>1972→77</td>
<td>88 98 106 81 99 101 169 119 96 108</td>
<td>(％)</td>
</tr>
<tr>
<td>新潟県幼児</td>
<td>1971→75</td>
<td>102 113 156 119 130 101 93 112 119 82</td>
<td>98.3 1.5</td>
</tr>
<tr>
<td>渔業地域</td>
<td>1969→74</td>
<td>116 100 87 106 87 91 131 147 97 172</td>
<td>97.3 2.7</td>
</tr>
<tr>
<td>都市近郊農村</td>
<td>1968→73</td>
<td>105 110 125 103 132 87 95 113 76 133</td>
<td>98.6 1.4</td>
</tr>
<tr>
<td>東京都幼児</td>
<td>1972→75</td>
<td>102 99 100 97 110 81 176 84 107 170</td>
<td>96.3 3.7</td>
</tr>
<tr>
<td>国民栄養調査</td>
<td>1970→75</td>
<td>107 111 113 100 103</td>
<td>- 119 123 100 127</td>
</tr>
</tbody>
</table>

児に共通した現象はV.B_{12}充足率の改善であり、これは本邦の成績にも観察された。そこで対象児のみ特異的な変動は、エネルギーおよび脂質の充足率の低下である。これはいずれも所要量の120～160％という高い充足率が、5年後に104～130％と低く摂取の域に接近したためであり、新潟県の他の3地区の場合は5年前のやや低い充足率が改善されて、高い充足率へ変動したものである。対象児の栄養充足率パターンの変動度2.3％は、漁業地域幼児の変動度とはほぼ等しく、農・山村幼児のそれ
の1.5～1.6倍であった。新潟県幼児の食帯動度は、東京都幼児のそれより小さく、本邦のそれより大であったものの、先の役割構成パターンの変動度に比べるならば、いずれも低値であった。

5. たん白質栄養の質的評価の比較

さて、対象児の摂取たん白質の質的評価の推移は表10に示す通りである。動物性たん白質比は、53.5％から57.9％となり、漬菜地域幼児の58％→51％、および東京都幼児の62％→58％と共に、幼児に推奨される比率（50％）を凌駕しており、山村幼児の32％→44％、ならびに農村幼児の35％→43％に比べるならば非常に優れていた。たん白質、アミノ酸価および化学価は表に示す通りであり、それぞれの評価基準により第一制限アミノ酸が異なるが、概して良好であり、対象児の有効たん白量（51.6 g→55.2 g）は漬菜地域幼児（55.9 g→50.4 g）にはほど等しく、山村幼児（34.4 g→41.6 g）および農村幼児（38.9 g→41.2 g）に比べ1.3～1.5倍の聞きがある。

表10 摂 取 たん 白 質 の 質 的 評 価 の 変 動

<table>
<thead>
<tr>
<th></th>
<th>春 (72)</th>
<th>夏 (72)</th>
<th>秋 (72)</th>
<th>冬 (72)</th>
<th>年 平 均</th>
</tr>
</thead>
<tbody>
<tr>
<td>動物性たん白質（％）</td>
<td>55.5</td>
<td>58.5</td>
<td>54.3</td>
<td>57.6</td>
<td>51.2</td>
</tr>
<tr>
<td>たん白質</td>
<td>(Try)</td>
<td>(S)</td>
<td>(S)</td>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>アミノ酸価</td>
<td>82</td>
<td>84</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>幼児の試験パターン1973年</td>
<td>81</td>
<td>75</td>
<td>76</td>
<td>76</td>
<td>84</td>
</tr>
<tr>
<td>化学価（日本1966年）</td>
<td>89</td>
<td>89</td>
<td>90</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>学入乳価（日本1966年）</td>
<td>(Leu)</td>
<td>(Try)</td>
<td>(Leu)</td>
<td>(Leu)</td>
<td>(Try)</td>
</tr>
<tr>
<td>牛乳価（日本1966年）</td>
<td>(Lys)</td>
<td>(Phe)</td>
<td>(Lys)</td>
<td>(Phe)</td>
<td>(Lys)</td>
</tr>
<tr>
<td>E/T比</td>
<td>2.514</td>
<td>2.539</td>
<td>2.493</td>
<td>2.515</td>
<td>2.592</td>
</tr>
</tbody>
</table>

注（）は第一制限アミノ酸を示す。S：合成アミノ酸、Try：トリプトファン、Thr：スレオニン、Leu：ノイシン、Lys：リジン、Phe：フェニルアラニン＋チロシン。

表11 対象幼児の体位・体力評価の変動

<table>
<thead>
<tr>
<th>項 目</th>
<th>調査年度</th>
<th>1972</th>
<th>1977</th>
</tr>
</thead>
<tbody>
<tr>
<td>体位</td>
<td>身長</td>
<td>99.0 ± 3.5</td>
<td>101.2 ± 4.8</td>
</tr>
<tr>
<td>体重</td>
<td>94.1 ± 5.3</td>
<td>101.1 ± 7.7</td>
<td></td>
</tr>
<tr>
<td>体力評価</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平衡力</td>
<td>3.0 ± 1.5</td>
<td>4.0 ± 1.0</td>
<td></td>
</tr>
<tr>
<td>筋持久力</td>
<td>—</td>
<td>2.7 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>眼発性</td>
<td>3.1 ± 0.9</td>
<td>3.0 ± 1.0</td>
<td></td>
</tr>
<tr>
<td>設定力</td>
<td>3.5 ± 2.7</td>
<td>4.3 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>平均値</td>
<td>3.2 ± 1.8</td>
<td>3.5 ± 0.8</td>
<td></td>
</tr>
</tbody>
</table>
6. 体力・栄養状態

表11に示すように、目標値に対する身長指数ならびに体重指数はいずれも5年前に比べて高くなり、それぞれの目標値にはほぼ等しい。これは農・山村および漁業地域幼児の体位指数がいずれも低下しているのは異なる現象であった。対象児の体位指数の値に基づき、食生活内容の改善に即するように思わされるが、対象児数の少ないこともあって、この間の相関性に一定の傾向を見出すことはできなかった。体位評価は5年後もささらった変化はなく、中位の成績であった。

以上の如く、今回は特別に系統立てた栄養教育プログラムを施さずに、時代の推移による都市近郊幼児の食生活変容の実態を観察したのであるが、'72年度から5年後の食糧構成にはそれぞれ増減いずれかの変動が見られ、そのパターンとしての変動率10.2%であった。これは漁業地域幼児のそれほぼ等しく、山村幼児の18.7%より低かったが、農村幼児の6.3%、東京都幼児の0.7%、および国民栄養の5.8%と対比するならば比較的高値である。しかしながら、それらの変動は都市近郊幼児の食品摂取量のバランスの改善にまで及んでおらず、依然として肉、油脂、魚介および果実類の摂取量が多く、緑黄色野菜、豆および穀類が摂取不足となっている。これに反し、栄養充足率パターンの変動率は2.3%と低値であったが、充足率の分布は'72年度の71(V.A)%～161（脂質）%から、'77年度の91（V.A）%～141（動物性たん白質）%に比較的平準化した。所要量に満たない栄養素は、'72年度はV.A、V.B₁およびV.B₂であったのが、'77年度はV.B₂のみとなった。

これまでに調査した農・山村および漁業地域幼児には、依然としてV.Cを除いたV.A、V.B₁およびV.B₂の摂取不足が共通して見られ、さらに農・山村幼児には動物性たん白質、カルシウムの摂取不足も加わり、一層の改善が望まれたが、都市近郊幼児の場合はむしろ動物たん白質および脂質等は所要量をかなり上回って摂取されているので、摂取過多が懸念される。このように地域性により摂取栄養状態の差異をもたらす要因は何であろうか。これまでの観察から次の三点が考えられるように思う。その一は食糧流通の問題である。田山村の場合は、生活環境の整備が著しく進展したものの2級辺地であることには変わりなく、他の地区に比べてたいへん食品の入手は未だかなりの制約をよぎなくされている。その二は食生活に関する意識の問題である。ちなみに、本調査対象の農村や漁業地域でも共に新潟市内にあり、食料入手の難易については都市近郊世帯とみたした差は認め難い。しかしながら、前者と後者では調査へ参画の事情が若干異なり、従って食生活に対する関心度にも差があるように思われる。それは、前者は幼児のいる世帯が限られていたため調査であるが、後者は栄養調査への協力をお願いした結果、積極的に希望して参画された方々であり、その調査への協力の意図は「わが家の中食は栄養上どうなったのか知りたくかったから。」と述べられていることからもうかがわれる。その三は母親の家事の生活時間の余裕の問題である。すなわち、前者の母親は農業や漁業に従事する他に工場等に日勤に出るなど全員が就業しているが、後者の母親の80%が主婦専業であり、自ずと家事的生活時間に差が生じてくるものと思われる。以上の三と三の要因は相互に関連し、生活時間にゆとりがあるから、食生活に関する情報も得やすく、またその実践も容易であるとい
うプラスの場合と、生活時間のゆとりのなさが食に関する情報を得難くし、従って意識も停滞したままでいうマイナスの場合の存在が考えられる。母親の就労が増えるつつある時代を迎え、このマイナスの場合のサイクルを改善するための一策がある。今後の大きな課題であろう。

なお、地域性を問わずに、世帯の数をさらに拡大して行っている問題点は緑黄色野菜摂取の困難性である。しかもこれは東京都幼児がはじめとして、多くの調査成績を表出されているところである。概して幼児は緑黄色野菜を好まないが、Carol L. Ireton らの研究に示唆されている通り、調理法の工夫と幼児心理に則った摂取を促す努力を、幼児の食事にずさわる人々にしなければならない。

栄養調査に協力されて、食の大切さを自覚される世帯が増えていることは最も望むところであるが、本調査においても 5 年前に調査者であった世帯が世帯あり、年余にわたる労力を調査に再び率先して協力していただき、有難いことであった。さらに、対象世帯の方々はいずれも調査に協力されてのメリットを上げられ、今後の継続調査への協力も了承された。

今後はこれにと異なり、経済不況による所得の伸び悩み等社会情勢の変動が、幼児の食生活にどのようにかかわってくるかという視点からも、引続き検討を重ねて行きたいと思う。

要約

幼児栄養をより的確に把握するため、1972年度と1977年度の都市近郊幼児の栄養状態について検討を加えた。対象児は 4～6 歳児 25～10 名で、四季の各調査した 3 日間（週末 12 日間）の食事摂取量を個人別に記録した。得られた成績は栄養所要量ならびに食糧構成基準と対比し、食糧構成パターンおよび栄養充足率パターンの 5 年後の変動状況については、数値パターン解析法を適用して、以下の成績をた。

(1) 都市近郊幼児の摂取食品数は 1 人 1 日当たり平均 26 品→29 品に増えたが、それは植物性食品に負うており、動物性食品は 6 品で変化なく、間食は 5 品→4 品に減じた。

(2) 食品群別摂取量では、この 5 年間に殆どどの食品に増減ずるかの変動が見られ、そのパターンとしての変動度は 10.2% であり、漬漬地域幼児の 10.4% にほぼ等しく、山村幼児の 18.7% より低値であったが、長村幼児の 6.3%，東京都幼児の 0.7% ならびに国民栄養の 5.8% に比べれば、比較的高値であった。肉、油脂、魚介および果実類が基準量を 50～98% 上回って摂取されており、緑黄色野菜、豆および穀類の摂取は、依然として基準量の 15～44% 下回っている。

(3) 栄養充足率は ’72年度の 71 (V.A) %～161 (脂質) %から、’77年度の 91 (V.B2) %～141 （動物性たん白質）%への比較的平準化し、パターンとしての変動度は 2.3% と低値であった。

(4) 摂取たん白質の質的評価では、動物性たん白質比は 53.5% ～57.9%，たん白質は 86 (Try) →89 (S), アミ酸価は 86 (Thr) →87 (Thr), 血漿は 75 (S) →74 (S), 人乳質は 87 (Thr) →89 (Try), 牛乳質は 89 (Lys) →92 (Phe) にそれぞれ微かずつ変動した。

(5) 対象児の体位の目標値に対する比率（%）は身長は 99.0±3.5→101.2±4.8，体重は 94.1±5.3
幼児の食生活に関する研究（第12報）

→101.1±7.7といずれも望ましい値に至り、体力評価は3.2±1.8→3.5±0.8と中位の成績であった。

文 献

1) 塩内秀雄：食物と疾病の生態学，サンヨード，東京，1976。
2) 日野 厚：人間の栄養学を求めて，自然社，東京，1977。
3) 食生活研究会編：これからのか食生活，農林統計協会，1976。
4) 矢野敬雄：医学と公衆栄養のあいだ，公衆栄養活動の展望，P. 203，第一出版，1977。
5) 関田隆子：幼児の食生活に関する研究（第1報），栄養と食糧，26，191，1973。
6) 関田玲子：幼児の食生活に関する研究，県立新潟女子短期大学研究紀要，第11册，89（1974），第12册，33（1975），第13册，27（1976）。
7) 手塚勝美ほか：食令，色，労作，妊娠，授乳婦別食糧構成，栄養学雑誌，28，89，1970。
8) 藤木信孝：幼児栄養調査の結果について，総合乳幼児研究，1，72，1977。
9) 東京都衛生局公衆衛生部：昭和47年度幼児栄養調査の結果，1973。
10) 田村直弥他：食糧消費パターンの数量的研究，栄養と食糧，22，559，1969。
11) 新潟県教育委員会編：幼児の体力テストとその活用のしかた，1969。
12) 新潟県公立幼稚園協会：幼児の運動能力実態調査，1973。
13) 白井伊三郎：へき地小児の栄養について，小児保健研究，32，239，1974。
14) 小林淳：病態栄養学双書，10，小児，204，第一出版，1970。
15) 大塚昌光他：幼児の食生活と給食との関係について，和歌山信愛女子短期大学紀要，第15号，16，1975。
16) 八倉隆和子：幼児の食生活と運動機能の関連についての研究，日本家政学会第29回総会研究発表要旨集，150，1977。
17) Betty B. Alford anb Mary H. Tibbets： Education increases consumption of vegetables by children，J. of Nutrition Education，3，12～14，1971。
18) Carol L. Iret (n and Helen A. Guthrie： Modification of vegetable-eating behavior in preschool Children，J. of Nutrition Education，4，100～103，1972。